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Abstract. By means of both the variational method and the pocket-state formalism the 
energy levels of three coupled methyl or ammine groups are calculated for a wide range of 
potential parameters. In particular the case of a small one-particle potential is investigated 
where the energy spectrum is governed by the E’-Eb splitting. The effects of different 
symmetries of the Hamiltonian on  the spectrum are studied. 

1. Introduction 

Rotational tunnelling is a probe well suited to studying the inter-atomic potential 
between the various constituents of molecular crystals. The energy spectrum of a methyl 
or ammine group is in most cases well described by a Hamiltonian containing a simple 
static potential (Press 1981) 

H = - a 2 / a q *  - Vcos(3q). (1) 
q denotes the average angle of the three protons; the energies are given in units of the 
rotational constant B ,  which has values of about 650 peV. Different crystal environments 
are accounted for by a variation in the parameter of the one-particle potential V .  

There are two physical situations which require us to go beyond the static one-particle 
potential approximation. The thermal motion of the lattice leads to an additional 
time-dependent potential. The resulting temperature-dependent level shift and lifetime 
effects have been tackled in various approaches (Huller 1980, 1989, Clough 1981, 
Hewson 1982, Wurger 1989). The other case which the single-particle picture in equation 
(1) fails to describe is where there is a strong rotation-rotation coupling between adjacent 
molecules. 

Then the potential cannot be separated and a rotational hindering barrier as in (1) is 
a bad representation of the inter-molecular interactions. As a consequence of the two- 
body forces the state vector for neighbouring molecules cannot be written as a product 
of one-particle states; in direct space this corresponds to a coherent rotational motion 
of adjacent molecules. There are two different effects of the surrounding groups on a 
given molecule. 

(i) The E states are more strongly localised; thus an E-symmetric neighbour provides 
a higher molecular field than the A-symmetric one and the tunnelling splitting depends 
on the symmetry of the surrounding molecules. 

(ii) An E-symmetric neighbour removes the degeneracy of the Ea and Eb states, 
i.e. right- and left-handed rotation correspond to different energies. An equivalent 
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statement is that the Hamiltonian is not invariant under time reversal of the coordinate 
of a single molecule. Clearly, the total Hamiltonian does exhibit this symmetry, as there 
is no magnetic field. 

In the great majority of experiments, rotational tunnelling seems to be a single- 
particle effect. There are, however, a few exceptions. The observed spectrum of LiAc 
(Clough et a1 1984) could be explained by the assumption of coupled pairs. In Pb(CH3), 
and in various hexammine salts the environment of the methyl groups and the ammine 
molecules exhibits a high symmetry; hence the low-order Fourier components of the 
single-particle potential are expected to be small and the rotational barrier is mainly due 
to the rotor-rotor coupling. Finally, solid methane and the two-dimensional layers of 
methyl groups in Sn(CH,),F, (Press 1981) provide examples of infinite systems of 
coupled molecules. In general, the coupling leads to several tunnelling lines with a 
characteristic temperature dependence. 

Contrary to the problem of coupled oscillators which can be solved by Fourier 
transformation, there is no such method to calculate the energy levels of coupled methyl 
groups. So far only the problem of two coupled rotors has been treated exactly by 
diagonalising or inverting the Hamiltonian matrix (Clough eta1 1984, Hausler and Huller 
1985). In this paper, we extend these calculations to three coupled groups. There are 
two new features with respect to previous work on two coupled rotors. The addition of 
a third molecule changes the symmetry properties and, as a consequence, the energy 
spectrum of the Hamiltonian drastically. Furthermore we focus on the case of strong 
coupling and small one-particle potential; this parameter range has been neglected so 
far. The symmetry of the potential in this work is of the kind relevant for the tetrahedral 
or octahedral coordination of the ligands in Pb(CHJ4 and in the hexammine salts. 
Besides a possible application to two sets of three ammine molecules each in Ni(NH,),I, 
(Blank and Kearley 1987, Bates and Stevens 1969), the formalism is to be extended to 
the interesting cases of four or six coupled groups. From such calculations, one could 
obtain insight into the spectrum of an infinity of coupled tunnelling systems. 

The organisation of the paper is as follows. In section 2 we introduce the model 
Hamiltonian and we discuss some symmetry properties. Then in section 3 we present 
numerical results for a wide range of parameters obtained by a variational treatment. In 
a complementary approach we reformulate the problem by means of Bloch states and 
we rederive the characteristics of the energy scheme. Section 4 is devoted to a discussion 
of the results. 

2. The model Hamiltonian 

We look at three molecular groups, each of which consists of a central atom and three 
protons. Exchange symmetry of the protons requires the Hamiltonian to be invariant 
under rotations ql + q 1  + 2n/3, where q 1  is the average angle of the three protons of 
the ith molecule q L  = 5 (cp i') + cp ! 2 )  + cp 1,)): 

For simplicity, we assume the molecular sites to be identical and for the coupling 
constants to be equal; a more general formulation would render the spectra more 
complicated without changing the essential features which we are interested in. When 
retaining only the lowest-order components of a Fourier expansion of the potential 
energy, we obtain the Hamiltonian 

H(cp1) = H(v1 + 2 4 3 )  i = 1,2 ,3 .  (2) 

The Hilbert space splits into 27 irreducible subspaces which can be classified by symmetry 
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quantum numbers for the three molecules: k = ( k l ,  k Z ,  k 3 ) ,  where ki = 1, 0 and -1 
correspond to symmetries Ea, A and Eb, respectively. Owing to the identical potential 
parameters and the time reversal symmetry of (3) the 27 representations yield only six 
different level schemes. 

For V = 0 we have in addition to the symmetry due to proton (2) an inversion centre 
at q I  = (n/6)(1, 1, 1) with respect to Q, = (q1,  q2 ,  q3):  

H ( q )  = H(2T1- (4) 
This corresponds to the existence of two degenerate configurations of the three 
molecules. In contrast to the invariance under proton permutation, this is not an exact 
symmetry of the physical system. For molecular sites fulfilling (4), one expects a spon- 
taneous symmetry breaking due to a static phonon. The situation described by (4) is 
analogous to that of a particle in a double-minimum potential. 

3. Results 

3.1. Variational treatment 

We denote the eigenstates of (3) by their symmetry k and by a band index (Matuschek 
and Huller 1988). The former labels the 27 irreducible subspaces, and the latter enu- 
merates the states therein, beginning with the ground-state multiplet a = 0. 

For the numerical work an expansion in a product basis of angular momentum 
eigenstates is most convenient: 

The one-particle states lm) are defined by 

(qilm) (1/V5i) exp(imqi). ( 6 )  
Owing to the symmetry of the Hamiltonian (2) the expansion coefficients in ( 5 )  vanish 
unless ( m  - k , ) /3 ,  (n  - k 2 ) / 3  and ( p  - k 3 ) / 3  are integers; these are the periodic bound- 
ary conditions in the angles q i  for the wavefunction. 

By means of the variational method we obtain the lowest energy level of symmetry 
k by minimising 

EOk ( jCmnp >) (Okl HIOk)/(Ok10k) (7) 

(Pklak) = 0 for 0 6 < a. (8) 

with respect to the expansion coefficients. Higher levels E ,  can be calculated by 
imposing orthogonality on the lower-lying states 

In figures 1 and 2 we show the two lowest multiplets for various parameters. We 
distinguish four qualitatively different level schemes, 

Regime I is the strong-coupling regime with zero bias (W > 10 and V = 0). The 54 
levels of the two lowest bands are arranged in five groups with equal spacings A .  Between 
the two A-symmetric groups there are two levels with the states which contain one, two 
or three E labels of the same type and the middle level with the states exhibiting at least 
one Ea-Eb pair. 

Regime I1 is the weakly biased regime (W > 10 and A s V < C).  C denotes some 
critical value of the one-particle potential which roughly equals unity. The non-zero bias 
splits the two bands by an energy of about 6V; the arrangement of the various states is 
similar to that in regime 11. The spacings are no longer equal; their ratio is about 1 : 3 .  
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W 
Figure 1. The two lowest-lying bands LY = 0, 1 for 0 < W < 20 and V = 0. 

Regime I11 is the strongly biased regime (V S C). The distribution of the 27 states in 
each band is very different from that described above. The energy spectrum is governed 
by the number of E-symmetric molecules with a negligibly small Ea-Eb splitting. The 
level spacings decrease with increasing number of E labels; for V > W they become 
equal. 

Regime IV is the free-rotor regime (W < 1 and V < 1): the spectrum is that of three 
almost free rotors; it contains states for which the total angular momentum (i.e. the sum 
of the squares of the individual angular momenta) does not exceed nine. 

The calculation is confined to a Hilbert space Q3 of dimension 333, where Q = {Im): 
-16 s m 6 16). This space separates into 27 subspaces of dimension 1331; for V = 0 
these split further into two parts each. Hence the stationary solutions of (7) are deter- 
mined by looking for the minimum of a function of 1330 variables, which is done 
numerically by means of library routines. 

The variational treatment is exact in this finite-dimensional space. The results are 
most sensitive to the dimension for strong coupling; we have performed calculations in 
irreducible subspaces of dimension 2197 instead of 1331 and found deviations smaller 
than which is negligible. 

It is quite a difficult task to find the minimum of a function in such high-dimensional 
spaces. We have tested the computer program by starting the search from different 
initial values; it always discovered the correct minimum. The accord with the results 
from Bloch theory of Q 3.2 assures that there is no systematic neglect of a lower-energy 
solution. Moreover, the energy spectra for the free-rotor regime IV and the strongly 
biased regime I11 agree with those obtained by perturbation theory and in the Hartree 
approximation, respectively. 

3.2. Pocket-state formalism 

In this section we give a complementary treatment of the tunnelling spectrum by setting 
up the state vector of pocket states localised in the various minima of the potential 
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Figure 2. The two lowest-lying bands CY = 0, 1 for W = 30 and finite V.  

energy. This method is analogous to the calculation of electronic energy bands starting 
from Wannier functions; it has been applied previously to the rotation of a single 
molecule (Huller and Kroll 1975, Huller 1980). 

For W > 0 and V = 0 there are two sets of 27 minima at the sites of two simple cubic 
lattices qmnp = ( n / 3 ) ( m ,  n , p ) :  one with m, n,  p even, and the other with m ,  n ,  p odd. 
A non-zero bias, V > 0, removes the degeneracy of the two sets; they are then separated 
by an energy of 6V. 

For strong coupling and vanishing one-particle potential the state vector can be 
written as a superposition of pocket states. We separate the phases corresponding to the 
symmetries (2 )  and (4); for (Y = 0 , l  we have 

For large Vwe construct states from the two sets separately; they read, for (Y = 0 , 1 ,  

~ a k )  = 2 (1 + (-I)"+") exp(ik. 4pmnp)/mnp). (9b)  
m.n,p 

By lmnp) we denote a state localised in the potential minimum at 4pmnq. 
As soon as one knows the Hamilton matrix in the pocket-state basis, i.e. 

amnp;m'n'p, = (mnp1Hlm'n'p') 

the energy spectrum is easily calculated by means of 
Enk = (aklHlak)/(aklak). 

Obviously the main difficulty is to work out the matrix elements (10). We are interested 
in the level scheme rather than in absolute energies; thus we may make quite a crude 
approximation in estimating the non-diagonal elements of the Hamiltonian. 
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I I1 I1 I 
Figure 3. The level scheme obtained by means of equation (11) for strong coupling and three 
different ranges of the bias. As 51 corresponds to E" and Eh symmetry, levels differing in 
one sign display the Ed-Eh splitting. 

We retain only elements between neighbouring minima, and we approximate them 
by means of the WKB exponent 

exp (- 1 d v  V D  - U ( ? ) )  (12) 

where D is the diagonal element in (10) and U is the barrier along a straight line between 
adjacent pockets. This is the simplest version of the WKB approximation, but it is 
sufficient for our purpose. We need not even compute the quantities (12) explicitly, 
because the dominant tunnelling paths can be determined from the distance between 
the pockets and the height of the barrier separating them. 

We distinguish the following ranges for the potential parameters. 
In the zero-bias range or regime I, owing to the lower barrier of-2W the matrix 

elements between pockets along space diagonals (with distance n/V3) are the most 
important; the state vector is given by (sa). 

In the small-bias range or regime 11, for A < V < C the state is restricted to 27 pockets 
as in (9b) ,  but the tunnelling occurs via the other set of minima. 

In the large-bias range or regime 111, if V exceeds some critical value C, the matrix 
elements connecting pockets along a coordinate axis dominate the spectrum; their 
distance equals 2n/3, and the barrier height is 4W + 2V. 

These ranges correspond to those discussed in § 3.2. By means of equations (9) and 
(11) the level schemes for the different values of the bias V are easily calculated; they 
are shown in figure 3. 

This section was mainly motivated by a wish to confirm the validity of the numerical 
results of § 3.2. On the other hand, the pocket-state formalism in itself provides a 
powerful tool for the calculation of the energy spectrum of strongly coupled rotors, 
because it applies to higher coordination numbers as well, where the methods using an 
angular momentum basis are unsuitable because of the numerical expense. Clearly, then, 
a more thorough computation of the matrix elements (10) is required; the evaluation of 
(3) between harmonic oscillator states should be a reliable approach. 
3.3. The effect of a collective free-rotor coordinate 
The potential in (3) is incomplete in so far as we have neglected the one-particle sine 
component as well as the coupling term with the minus sign between the angles. Taking 
into account the latter, we obtain the coupling Hamiltonian 
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Figure 4. The levels of the lowest multiplet of the Hamiltonian (13) for V = 0 and Wc') = 0 

This potential energy is minimum in a finite number of points in configuration space. 
For W(+) = 0 these minima degenerate to lines, i.e. one can single out a collective 
coordinate which corresponds to a free rotor; then the Hamiltonian exhibits a continuous 
symmetry with respect to a collective rotation of the three molecules which corresponds 
to translational invariance along the principal diagonal in cp-space: 

In figure 4 we show the lowest-energy band as a function of W(-) .  For WC-1 = 0 the 
spectrum is that of three independent free rotors, whereas for strong coupling one 
obtains the levels of a single rotor with the triple moment of inertia as it is to be expected 
from the symmetry (14). For large Wc-1, the spectrum is described by 

A similar result has been derived for two coupled rotors (Hausler and Huller 1985, 
Hausler 1988); there the rotational constant of the collective coordinate is 1 instead of 4 
as in our case. 

Figure 5 displays the behaviour of the energy spectrum when passing continuously 
from W(-)  = 0 to W(+) = 0 and keeping W(+) + W ( - )  constant. Besides these limiting 
cases, the parameter set W(+) = Wc-1 is somewhat particular. The coupling potential 
then reads 2W(7)X(i,) cos(3cp,,) cos(3q?,); owing to the missing sine terms there is no Ea- 
Eb splitting. 

Wcp) = Ng, + t(l,1,1>1 t real, W(+)  = 0. (14) 

Ek = constant + 4(kl + k 2  + k3)* .  ( 1 5 )  

4. Discussion 

In the preceding sections we derived a variety of possible spectra for three coupled 
rotors. There are two different causes for the deviation from the usual scheme which is 
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Figure 5. The levels of the lowest multiplet for V = 0 and W(+' + W(-) = 20. 

governed by the A-E splitting of the one-particle states, namely the presence of a 
collective free-rotor coordinate as in (13) with W(+) = 0 and the existence of two degener- 
ate configurations as in (3). In previous work on two coupled rotors (Clough et a1 1984, 
Hausler and Huller 1985) The ensuing effects have not been separated; there both vanish 
simultaneously with increasing one-particle potential V. 

This is different in the present case. Whereas the consequences of a collective zero- 
potential coordinate can be seen in figure 5 or by comparing figures 1 and 4, the effects 
of an increasing bias are displayed in figure 2. This separation seems quite important, 
because the existence of a collective free-rotor coordinate is rather an unphysical 
artefact. In general the Fourier expansion of the coupling potential contains terms with 
both plus and minus signs. As the calculation for a simple point charge model indicates 
(Wiirger (1988); the connection to the notation used there is made by putting W(') = 
- V, f V,), the latter are relatively small; hence they may be neglected, if the remainder 
of the Hamiltonian then does not exhibit a continuous symmetry. 

For a similar reason we have neglected higher-order contributions and the sine term 
in the one-particle potential. Being compatible with the symmetries (2) and (4), they do 
not affect the energy spectrum significantly. Only the one-particle cosine terms of odd 
order break the symmetry (4) and hence act as a bias separating the two sets of minima 
of the potential energy. 

It is noteworthy that the expectation values of the operators cos(3qi) and sin(3rpi) 
vanish for zero bias, whereas cos(6qJ has quite a large diagonal element. In physical 
terms that corresponds to the absence of a well defined preferential orientation of the 
molecules; we emphasise the analogy of the two sets of minima of the potential in (3) 
with a double-minimum potential. The present case is more complicated in so far as we 
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Figure 6. Illustration of the states for zero bias; 
the two signs correspond to (Y = 0 , l .  )- i 

deal with three coupled molecules instead of a single particle; the strongly coherent 
motion is reflected by the large expectation value of cos(3qi + 39,). This situation is 
illustrated in figure 6. 

The most intriguing feature seems to us the difference between the spectra for zero 
and finite bias as displayed in figures 2 and 3. For V = 0 the two lowest bands overlap; 
the level scheme is dominated by the Ea-Eb splitting. With increasing coupling strength 
the bands become narrower, but their structure remains unchanged. A non-zero bias 
splits the first librational multiplet from the ground states and alters the level scheme 
substantially; with larger V ,  one approaches the region where the system can be described 
by a product of one-particle states. For the range of parameters investigated, this 
crossover occurs at a bias of about one rotational constant; it is not clear whether this 
remains true for still stronger coupling. 

The condition of such a small one-particle potential is most likely to be fulfilled 
for small complexes with several ammine or methyl ligands. Examples are the metal 
hexammine salts which cover the whole range from almost free rotation to low-frequency 
tunnelling (Blank and Kearley 1987, Kearley eta1 1987); the different inelastic transitions 
observed by neutron scattering have so far escaped understanding. A very recent 
investigation of the central peak (Kearley 1989) excludes the interpretation of the 
tunnelling spectra of Ni(NH3)612 as inter-band transition as in figure 2 with V = 30B and 
W = 0.016B; the high-resolution spectra of the quasi-elastic intensity do not show the 
fine structure predicted by the model. When assuming the tunnelling lines to be due to 
intra-band transitions, we obtain the correct line positions, but the observed temperature 
dependence of the intensities is in manifest contradiction with such an explanation. 
For a comparison with the experimental data available for Co(NH3),(PF6), it seems 
indispensable to deal with six coupled molecules; owing to the shallow potential the 
ligands are not supposed to lock in an orientation separating them into two groups of 
three molecules each. 

5. Conclusion 

We have dealt with a Hamiltonian exhibiting two symmetries of quite different origin; 
the invariance under proton exchange entails the coherent rotational tunnelling, whereas 
the (approximate) crystal symmetry (4) leads to the situation of a biased double well, 
the two minima corresponding to different collective orientations of the molecular 
groups. The main results are as follows. 

(i) For a small one-particle potential the energy spectrum is dominated by the Ea- 
Eb splitting; this novel feature is in contrast to the situation described by ( l ) ,  where the 
E-symmetric states are degenerate. 

(ii) The transition to the strongly biased regime, where the energy difference 
between A- and E-symmetric states governs the level scheme, occurs at about one 
rotational constant. This relatively small value might render difficult the search for 
compounds showing the weak-bias behaviour. 

(iii) It is essential whether the interaction part of the Hamiltonian exhibits a con- 
tinuous symmetry. For a zero one-particle potential such a symmetry results in the 
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energy spectrum of a free rotor with a moment of inertia which is the sum of the moments 
of the coupled molecules; in the absence of a continuous symmetry the coupling leads 
to a tunnelling spectrum which becomes exponentially narrow with increasing coupling 
strength. We believe the Hamiltonian (3) to be generic for coupled molecules rather 
than that for two rotors studied previously. 

Strong rotor-rotor coupling provides an interesting variety of rotational tunnelling; 
the general aspects of our results for three groups are expected to be valid for larger 
systems as well. 
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